当前位置:首页 » 十一秒杀 » 文科数学秒杀公式大全
扩展阅读
宁波奥德赛优惠价格 2021-03-15 14:26:02
丹尼斯购物卡能挂失么 2021-03-15 14:25:58
淘宝购物指纹验证失败 2021-03-15 14:24:44

文科数学秒杀公式大全

发布时间: 2021-03-03 12:00:14

『壹』 高考文科数学必背公式

一、高中数学诱导公式全集:

常用的诱导公式有以下几组:

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα (k∈Z)

cos(2kπ+α)=cosα (k∈Z)

tan(2kπ+α)=tanα (k∈Z)

cot(2kπ+α)=cotα (k∈Z)

公式二:

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α与 -α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:

π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈Z)

注意:在做题时,将a看成锐角来做会比较好做。

诱导公式记忆口诀

※规律总结※

上面这些诱导公式可以概括为:

对于π/2*k ±α(k∈Z)的三角函数值,

①当k是偶数时,得到α的同名函数值,即函数名不改变;

②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.

(奇变偶不变)

然后在前面加上把α看成锐角时原函数值的符号。

(符号看象限)

例如:

sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。

当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。

所以sin(2π-α)=-sinα

上述的记忆口诀是:

奇变偶不变,符号看象限。

公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α

所在象限的原三角函数值的符号可记忆

水平诱导名不变;符号看象限。



各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”.

这十二字口诀的意思就是说:

第一象限内任何一个角的四种三角函数值都是“+”;

第二象限内只有正弦是“+”,其余全部是“-”;

第三象限内切函数是“+”,弦函数是“-”;

第四象限内只有余弦是“+”,其余全部是“-”.

上述记忆口诀,一全正,二正弦,三内切,四余弦



还有一种按照函数类型分象限定正负:

函数类型 第一象限 第二象限 第三象限 第四象限

正弦 ...........+............+............—............—........

余弦 ...........+............—............—............+........

正切 ...........+............—............+............—........

余切 ...........+............—............+............—........

同角三角函数基本关系

同角三角函数的基本关系式

倒数关系:

tanα ·cotα=1

sinα ·cscα=1

cosα ·secα=1

商的关系:

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα

平方关系:

sin^2(α)+cos^2(α)=1

1+tan^2(α)=sec^2(α)

1+cot^2(α)=csc^2(α)

同角三角函数关系六角形记忆法

六角形记忆法:(参看图片或参考资料链接)

构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。

(1)倒数关系:对角线上两个函数互为倒数;

(2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。

(主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。

(3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

两角和差公式

两角和与差的三角函数公式

sin(α+β)=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

二倍角公式

二倍角的正弦、余弦和正切公式(升幂缩角公式)

sin2α=2sinαcosα

cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan2α=2tanα/[1-tan^2(α)]

半角公式

半角的正弦、余弦和正切公式(降幂扩角公式)

sin^2(α/2)=(1-cosα)/2

cos^2(α/2)=(1+cosα)/2

tan^2(α/2)=(1-cosα)/(1+cosα)

另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)

万能公式

万能公式

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

万能公式推导

附推导:

sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,

(因为cos^2(α)+sin^2(α)=1)

再把*分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α))

然后用α/2代替α即可。

同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。

三倍角公式

三倍角的正弦、余弦和正切公式

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]

三倍角公式推导

附推导:

tan3α=sin3α/cos3α

=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)

=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)

上下同除以cos^3(α),得:

tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))

sin3α=sin(2α+α)=sin2αcosα+cos2αsinα

=2sinαcos^2(α)+(1-2sin^2(α))sinα

=2sinα-2sin^3(α)+sinα-2sin^3(α)

=3sinα-4sin^3(α)

cos3α=cos(2α+α)=cos2αcosα-sin2αsinα

=(2cos^2(α)-1)cosα-2cosαsin^2(α)

=2cos^3(α)-cosα+(2cosα-2cos^3(α))

=4cos^3(α)-3cosα



sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

三倍角公式联想记忆

★记忆方法:谐音、联想

正弦三倍角:3元 减 4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”))

余弦三倍角:4元3角 减 3元(减完之后还有“余”)

☆☆注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。

★另外的记忆方法:

正弦三倍角: 山无司令 (谐音为 三无四立) 三指的是"3倍"sinα, 无指的是减号, 四指的是"4倍", 立指的是sinα立方

余弦三倍角: 司令无山 与上同理

和差化积公式

三角函数的和差化积公式

sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]

积化和差公式

三角函数的积化和差公式

sinα ·cosβ=0.5[sin(α+β)+sin(α-β)]

cosα ·sinβ=0.5[sin(α+β)-sin(α-β)]

cosα ·cosβ=0.5[cos(α+β)+cos(α-β)]

sinα ·sinβ=-0.5[cos(α+β)-cos(α-β)]

和差化积公式推导

附推导:

首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb

我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb

所以,sina*cosb=(sin(a+b)+sin(a-b))/2

同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2

同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb

所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb

所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2

同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2

这样,我们就得到了积化和差的四个公式:

sina*cosb=(sin(a+b)+sin(a-b))/2

cosa*sinb=(sin(a+b)-sin(a-b))/2

cosa*cosb=(cos(a+b)+cos(a-b))/2

sina*sinb=-(cos(a+b)-cos(a-b))/2

好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式.

我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2

把a,b分别用x,y表示就可以得到和差化积的四个公式:

sinx+siny=2sin((x+y)/2)*cos((x-y)/2)

sinx-siny=2cos((x+y)/2)*sin((x-y)/2)

cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)

cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)

『贰』 高中一些比较有用的数学公式。最好有分类。适合文科数学。

我刚高考完,学文的,数学吗,就是得多做题,没别的招。我不知道你是哪个省的,但是高考题的路数都是大同小异,当然,今年江苏是个例外。一般来说有几个题型是必考的,比如三角函数,立体几何,导数,向量之类的,你自己做做题就知道规律了。公式的话,三角函数公式必须背,诱导公式啊倍半角公式之类的一定要熟,然后化简之类的多练一练,他愿意出SIN什么乘以COS什么之类一堆让你化简成SIN(X+几分之π)那种题,再加上正弦余弦性质也容易掺和一起考。立体的话公式背一背,就愿意考哪几个类型,求什么线线垂直啊线面垂直啊什么的,你要是几何感不好,就学学向量法解立体几何,比几何法简单点。导数啊向量啊就是那几个公式,太难的也说不清。总的来说你不用弄太难的题,把基础打好,多做题,把容易出的基本的题型做好,难的那种题不用做几道,做了也不会还打击自己。考试主要抓好填空选择,这个分值大,错一个就五分,你做大题累半天做对了才10分12分还可能做不对。公式你找老师,你班好的学生抄一抄背一背,太多了我给你写不过来。记住,背好公式再做题,别边看边做。做题自己先做,再看答案,背背常用的做法固定的题。反正一时和你说不过来,多做题才是王道,这么说吧,我一直特讨厌数学,从不做数学题,一模之后没招了开始猛做题二模涨了30分。当然,这也得看你的方法和智商,我不能说我多聪明但是不笨,实际点的话我就祝你你脑袋更好使以后还努力高考取得好成绩

唉,我写这么多,还原创,就采纳一下吧~~然后楼上的公式还算比较全,再搜集点,我的公式单也给你传不过去你自己再补充点

『叁』 高考文科数学需要的全部公式

高考数学常用公式(文科)

指数公式:; ; ;
对数公式:.




2.等差数列的通项公式:(一次函数)
其前n项和公式 .(二次函数)

3.等比数列的通项公式:
其前n项的和公式或.
4.同角三角函数的基本关系式 ,=,.

5.诱导公式 (略)(奇变偶不变,符号看象限)

6.两角和与差三角公式
;;
.=

7.二倍角公式 .
.
.

8.三角函数的周期公式
函数,x∈R及函数,x∈R(ω,为常数,ω>0)的周期;
函数,(A,ω,为常数,且A≠0,ω>0)的周期.
9.正弦定理: ;

10.余弦定理:;; .

11.面积公式(1)(分别表示a、b、c边上的高).
(2).

12.三角形内角和定理 在△ABC中,有
.

13.平面两点间的距离公式:
= (其中A,B).
空间两点间的距离公式 : 若A,B,则
=.

14.向量的平行与垂直 设a=,b=,且b0,则
a//bb=λa.
ab(a0)a·b=0.

共线向量定理 对空间任意两个向量a、b(b≠0 ),a∥b存在实数λ使a=λb.

向量计算公式:设a=,b=

15.常用不等式:
(1)(当且仅当a=b时取“=”号).
(2)(当且仅当a=b时取“=”号).

16.含有绝对值的不等式 当a>0时,有
.
或.

17..斜率公式 =(、).

18.直线的四种方程
(1)点斜式 (直线过点,且斜率为).
(2)斜截式 (b为直线在y轴上的截距).
(3)两点式 ()(、 ()).
(4)一般式 (其中A、B不同时为0).

19.两条直线的平行和垂直 :

//

(1)若,

①; ②.

(2)若,,且A1、A2、B1、B2都不为零,

//

①; ②;

20.点到直线的距离 (点,直线:).
两平行直线间距离 (两直线为)

21. 圆的方程
(1)圆的标准方程 .
(2)圆的一般方程 (>0).
(3)圆的参数方程 .

22.直线与圆锥曲线相交的弦长公式 :

(设而不求):(弦端点A,由方程 消去y得到,,为直线的倾斜角,为直线的斜率).

23.等可能性事件的概率.
24.互斥事件A,B分别发生的概率的和P(A+B)=P(A)+P(B).
25.独立事件A,B同时发生的概率P(A·B)=P(A)·P(B).
26.在处的导数(变化率)
.

27.导数的几何意义: 函数在点处的导数是曲线在处的切线的斜率,相应的切线方程是.

28.几种常见函数的导数
(1) (C为常数). (2) .
(3) . (4) .
(5) ;. (6) ; .

29.复数相等:.()

30.复数的模(或绝对值)==.

31.复数的四则运算法则()
(1);
(2);
(3);
(4).

32.统计:
平均数:
方差:
标准差:

『肆』 求一份高中数学文科公式大全

1.诱导公式
sin(-a)=-sin(a)
cos(-a)=cos(a)
sin(π2-a)=cos(a)
cos(π2-a)=sin(a)
sin(π2+a)=cos(a)
cos(π2+a)=-sin(a)
sin(π-a)=sin(a)
cos(π-a)=-cos(a)
sin(π+a)=-sin(a)
cos(π+a)=-cos(a)
2.两角和与差的三角函数
sin(a+b)=sin(a)cos(b)+cos(α)sin(b)
cos(a+b)=cos(a)cos(b)-sin(a)sin(b)
sin(a-b)=sin(a)cos(b)-cos(a)sin(b)
cos(a-b)=cos(a)cos(b)+sin(a)sin(b)
tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b)
tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b)
3.和差化积公式

sin(a)+sin(b)=2sin(a+b2)cos(a-b2)
sin(a)−sin(b)=2cos(a+b2)sin(a-b2)
cos(a)+cos(b)=2cos(a+b2)cos(a-b2)
cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)
4.二倍角公式
sin(2a)=2sin(a)cos(b)
cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a)

5.半角公式
sin2(a2)=1-cos(a)2
cos2(a2)=1+cos(a)2
tan(a2)=1-cos(a)sin(a)=sina1+cos(a)
6.万能公式
sin(a)=2tan(a2)1+tan2(a2)
cos(a)=1-tan2(a2)1+tan2(a2)
tan(a)=2tan(a2)1-tan2(a2)
7.其它公式(推导出来的 )
a⋅sin(a)+b⋅cos(a)=a2+b2sin(a+c) 其中 tan(c)=ba
a⋅sin(a)+b⋅cos(a)=a2+b2cos(a-c) 其中 tan(c)=ab
1+sin(a)=(sin(a2)+cos(a2))2
1-sin(a)=(sin(a2)-cos(a2))2
三角函数公式
两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h
正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2
圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l
弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=s*h 圆柱
二维图形
下面是一些二维图形的周长与面积公式。
圆:
半径= r 直径d=2r
圆周长= 2πr =πd
面积=πr2 (π=3.1415926…….)
椭圆:
面积=πab
a与b分别代表短轴与长轴的一半。
矩形:
面积= ab
周长= 2a+2b
平行四边形(parallelogram):
面积= bh = ab sinα
周长= 2a+2b
梯形:
面积= 1/2h (a+b)
周长= a+b+h (secα+secβ)
正n边形:
面积= 1/2nb2 cot (180°/n)
周长= nb
四边形(i):
面积= 1/2ab sinα
四边形(ii):
面积= 1/2 (h1+h2) b+ah1+ch2
三维图形
以下是三维立体的体积与表面积(包含底部)公式。
球体:
体积= 4/3πr3
表面积= 4πr2
方体:
体积= abc
表面积= 2(ab+ac+bc)
圆柱体:
体积= πr2h
表面积= 2πrh+2πr2
圆锥体:
体积= 1/3πr2h
表面积=πr√r2+h2 +πr2
三角锥体:
若底面积为A,
体积= 1/3Ah
平截头体(frustum):
体积= 1/3πh (a2+ab+b2)
表面积=π(a+b)c+πa2+πb2
椭球:
体积= 4/3πabc
环面(torus):
体积= 1/4π2 (a+b) (b–a) 2
表面积=π2 (b2–a2)

『伍』 高中文科数学最全公式

高考数学常用公式

1.二次函数的解析式的三种形式 ①一般式 ;② 顶点式 ;③零点式 .
设函数 在某个区间内可导,如果 ,则 为增函数;如果 ,则 为减函数.
2.函数 的图象的对称性:①函数 的图象关于直线 对称 .②函数 的图象关于直线 对称 .
3.两个函数图象的对称性:①函数 与函数 的图象关于直线 (即 轴)对称.②函数 与函数 的图象关于直线 对称.③函数 和 的图象关于直线y=x对称.
4.分数指数幂 ( ,且 ).
( ,且 ).
5. .
6. ( 数列 的前n项的和为 ).
7.等差数列的通项公式 ;
其前n项和公式 .
8.等比数列的通项公式 ;
其前n项的和公式
9.同角三角函数的基本关系式 , = , .
10.和角与差角公式
;
;
.
= (辅助角 所在象限由点 的象限决定, ).
11.二倍角公式 .
. .
12.三角函数的周期公式 函数 ,x∈R及函数 ,x∈R(A,ω, 为常数,且A≠0,ω>0)的周期 ;函数 , (A,ω, 为常数,且A≠0,ω>0)的周期 .
13.正弦定理 .
14.余弦定理 ; ; .
15.面积定理(1) ( 分别表示a、b、c边上的高).
(2) .
16.三角形内角和定理 在△ABC中,有
.
17.平面两点间的距离公式
= (A ,B ).
18.向量的平行与垂直 设a= ,b= ,且b 0,则
a b b=λa .
a b(a 0) a•b=0 .
19.三角形的重心坐标公式 △ABC三个顶点的坐标分别为 、 、 ,则△ABC的重心的坐标是 .
20.常用不等式:
(1) (当且仅当a=b时取“=”号).
(2) (当且仅当a=b时取“=”号).
(5)
21.含有绝对值的不等式 当a> 0时,有
.一元二次不等式 ,如果 与 同号,则其解集在两根之外;如果 与 异号,则其解集
或 .
22.指数不等式与对数不等式 (1)当 时,
; .
(2)当 时,
;
23.斜率公式 ( 、 ).
24.直线的四种方程
(1)点斜式 (直线 过点 ,且斜率为 ).
(2)斜截式 (b为直线 在y轴上的截距).
(3)两点式 ( )( 、 ( )).
(4)一般式 (其中A、B不同时为0).
25.两条直线的平行和垂直 (1)若 ,
① ;② .
(2)若 , ,且A1、A2、B1、B2都不为零,
① ;② ;
26.点到直线的距离 (点 ,直线 : ).
27. 圆的方程
(1)圆的标准方程 .
(2)圆的一般方程 ( >0).
28.直线与圆锥曲线相交的弦长公式 或
(弦端点A ,由方程 消去y得到 , , 为直线 的倾斜角, 为直线的斜率).
29.共线向量定理 对空间任意两个向量a、b(b≠0 ),a‖b 存在实数λ使a=λb.
30.等可能性事件的概率 .
31.互斥事件A,B分别发生的概率的和P(A+B)=P(A)+P(B).
32. 个互斥事件分别发生的概率的和P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An).
33.独立事件A,B同时发生的概率P(A•B)= P(A)•P(B).
34.n个独立事件同时发生的概率 P(A1• A2•…• An)=P(A1)• P(A2)•…• P(An).
35.函数 在点 处的导数是曲线 在 处的切线的斜率 ,相应的切线方程是 .
36.几种常见函数的导数
(1) (C为常数). (2) .
(3) . (4) .
(5) ; . (6) ; .
37. .( )
38.复数 的模(或绝对值) = = .
39.复数的四则运算法则
(1) ; (2) ;
(3) ; (4)

『陆』 文科数学高中公式大全!

对数的性质及推导
用^表示乘方,用log(a)(b)表示以a为底,b的对数
*表示乘号,/表示除号

定义式:
若a^n=b(a>0且a≠1)
则n=log(a)(b)

基本性质:
1.a^(log(a)(b))=b
2.log(a)(MN)=log(a)(M)+log(a)(N);
3.log(a)(M/N)=log(a)(M)-log(a)(N);
4.log(a)(M^n)=nlog(a)(M)

推导
1.这个就不用推了吧,直接由定义式可得(把定义式中的[n=log(a)(b)]带入a^n=b)

2.
MN=M*N
由基本性质1(换掉M和N)
a^[log(a)(MN)] = a^[log(a)(M)] * a^[log(a)(N)]
由指数的性质
a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}
又因为指数函数是单调函数,所以
log(a)(MN) = log(a)(M) + log(a)(N)

3.与2类似处理
MN=M/N
由基本性质1(换掉M和N)
a^[log(a)(M/N)] = a^[log(a)(M)] / a^[log(a)(N)]
由指数的性质
a^[log(a)(M/N)] = a^{[log(a)(M)] - [log(a)(N)]}
又因为指数函数是单调函数,所以
log(a)(M/N) = log(a)(M) - log(a)(N)

4.与2类似处理
M^n=M^n
由基本性质1(换掉M)
a^[log(a)(M^n)] = {a^[log(a)(M)]}^n
由指数的性质
a^[log(a)(M^n)] = a^{[log(a)(M)]*n}
又因为指数函数是单调函数,所以
log(a)(M^n)=nlog(a)(M)

其他性质:

性质一:换底公式
log(a)(N)=log(b)(N) / log(b)(a)

推导如下
N = a^[log(a)(N)]
a = b^[log(b)(a)]

综合两式可得
N = {b^[log(b)(a)]}^[log(a)(N)] = b^{[log(a)(N)]*[log(b)(a)]}

又因为N=b^[log(b)(N)]
所以
b^[log(b)(N)] = b^{[log(a)(N)]*[log(b)(a)]}
所以
log(b)(N) = [log(a)(N)]*[log(b)(a)] {这步不明白或有疑问看上面的}
所以log(a)(N)=log(b)(N) / log(b)(a)

性质二:(不知道什么名字)
log(a^n)(b^m)=m/n*[log(a)(b)]

推导如下
由换底公式[lnx是log(e)(x),e称作自然对数的底]
log(a^n)(b^m)=ln(a^n) / ln(b^n)
由基本性质4可得
log(a^n)(b^m) = [n*ln(a)] / [m*ln(b)] = (m/n)*{[ln(a)] / [ln(b)]}
再由换底公式
log(a^n)(b^m)=m/n*[log(a)(b)]
--------------------------------------------(性质及推导 完 )

公式三:
log(a)(b)=1/log(b)(a)

证明如下:
由换底公式 log(a)(b)=log(b)(b)/log(b)(a) ----取以b为底的对数,log(b)(b)=1
=1/log(b)(a)
还可变形得:
log(a)(b)*log(b)(a)=1

三角函数的和差化积公式
sinα+sinβ=2sin(α+β)/2·cos(α-β)/2
sinα-sinβ=2cos(α+β)/2·sin(α-β)/2
cosα+cosβ=2cos(α+β)/2·cos(α-β)/2
cosα-cosβ=-2sin(α+β)/2·sin(α-β)/2

三角函数的积化和差公式
sinα ·cosβ=1/2 [sin(α+β)+sin(α-β)]
cosα ·sinβ=1/2 [sin(α+β)-sin(α-β)]
cosα ·cosβ=1/2 [cos(α+β)+cos(α-β)]
sinα ·sinβ=-1/2 [cos(α+β)-cos(α-β)]

『柒』 文科数学中所有的公式

1.诱导公式
sin(-a)=-sin(a)
cos(-a)=cos(a)
sin(π2-a)=cos(a)
cos(π2-a)=sin(a)
sin(π2
a)=cos(a)
cos(π2
a)=-sin(a)
sin(π-a)=sin(a)
cos(π-a)=-cos(a)
sin(π
a)=-sin(a)
cos(π
a)=-cos(a)
2.两角和与差的三角函数
sin(a
b)=sin(a)cos(b)
cos(α)sin(b)
cos(a
b)=cos(a)cos(b)-sin(a)sin(b)
sin(a-b)=sin(a)cos(b)-cos(a)sin(b)
cos(a-b)=cos(a)cos(b)
sin(a)sin(b)
tan(a
b)=tan(a)
tan(b)1-tan(a)tan(b)
tan(a-b)=tan(a)-tan(b)1
tan(a)tan(b)
3.和差化积公式
sin(a)
sin(b)=2sin(a
b2)cos(a-b2)
sin(a)−sin(b)=2cos(a
b2)sin(a-b2)
cos(a)
cos(b)=2cos(a
b2)cos(a-b2)
cos(a)-cos(b)=-2sin(a
b2)sin(a-b2)
4.二倍角公式
sin(2a)=2sin(a)cos(b)
cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a)
5.半角公式
sin2(a2)=1-cos(a)2
cos2(a2)=1
cos(a)2
tan(a2)=1-cos(a)sin(a)=sina1
cos(a)
6.万能公式
sin(a)=2tan(a2)1
tan2(a2)
cos(a)=1-tan2(a2)1
tan2(a2)
tan(a)=2tan(a2)1-tan2(a2)
7.其它公式(推导出来的
)
a⋅sin(a)
b⋅cos(a)=a2
b2sin(a
c)
其中
tan(c)=ba
a⋅sin(a)
b⋅cos(a)=a2
b2cos(a-c)
其中
tan(c)=ab