当前位置:首页 » 优惠多多 » hertz优惠码6折
扩展阅读
宁波奥德赛优惠价格 2021-03-15 14:26:02
丹尼斯购物卡能挂失么 2021-03-15 14:25:58
淘宝购物指纹验证失败 2021-03-15 14:24:44

hertz优惠码6折

发布时间: 2021-03-03 18:12:56

1. 麻烦问一下谁知道有线电视的信号正常的情况下是多少赫兹

电视广播信号的频率范围是0~4.2兆赫.

赫兹,德国物理学家,生于汉堡。早在少年时代就被光学和力学实验所吸引。十九岁入德累斯顿工学院学工程,由于对自然科学的爱好,次年转入柏林大学,在物理学教授亥姆霍兹指导下学习。1885年任卡尔鲁厄大学物理学教授。1889年,接替克劳修斯担任波恩大学物理学教授,直到逝世。

赫兹对人类最伟大的贡献是用实验证实了电磁波的存在。

赫兹在柏林大学随赫尔姆霍兹学物理时,受赫尔姆霍兹之鼓励研究麦克斯韦电磁理论,当时德国物理界深信韦伯的电力与磁力可瞬时传送的理论。因此赫兹就决定以实验来证实韦伯与麦克斯韦理论谁的正确。依照麦克斯韦理论,电扰动能辐射电磁波。赫兹根据电容器经由电火花隙会产生振荡原理,设计了一套电磁波发生器,赫兹将一感应线圈的两端接于产生器二铜棒上。当感应线圈的电流突然中断时,其感应高电压使电火花隙之间产生火花。瞬间后,电荷便经由电火花隙在锌板间振荡,频率高达数百万周。由麦克斯韦理论,此火花应产生电磁波,于是赫兹设计了一简单的检波器来探测此电磁波。他将一小段导线弯成圆形,线的两端点间留有小电火花隙。因电磁波应在此小线圈上产生感应电压,而使电火花隙产生火花。所以他坐在一暗室内,检波器距振荡器10米远,结果他发现检波器的电火花隙间确有小火花产生。赫兹在暗室远端的墙壁上覆有可反射电波的锌板,入射波与反射波重叠应产生驻波,他也以检波器在距振荡器不同距离处侦测加以证实。赫兹先求出振荡器的频率,又以检波器量得驻波的波长,二者乘积即电磁波的传播速度。正如麦克斯韦预测的一样。电磁波传播的速度等于光速。1888年,赫兹的实验成功了,而麦克斯韦理论也因此获得了无上的光彩。赫兹在实验时曾指出,电磁波可以被反射、折射和如同可见光、热波一样的被偏振。由他的振荡器所发出的电磁波是平面偏振波,其电场平行于振荡器的导线,而磁场垂直于电场,且两者均垂直传播方向。1889年在一次著名的演说中,赫兹明确的指出,光是一种电磁现象。第一次以电磁波传递讯息是1896年意大利的马可尼开始的。1901年,马可尼又成功的将讯号送到大西洋彼岸的美国。20世纪无线电通讯更有了异常惊人的发展。赫兹实验不仅证实麦克斯韦的电磁理论,更为无线电、电视和雷达的发展找到了途径。

1887年11月5日,赫兹在寄给亥姆霍兹一篇题为《论在绝缘体中电过程引起的感应现象》的论文中,总结了这个重要发现。接着,赫兹还通过实验确认了电磁波是横波,具有与光类似的特性,如反射、折射、衍射等,并且实验了两列电磁波的干涉,同时证实了在直线传播时,电磁波的传播速度与光速相同,从而全面验证了麦克斯韦的电磁理论的正确性。并且进一步完善了麦克斯韦方程组,使它更加优美、对称,得出了麦克斯韦方程组的现代形式。此外,赫兹又做了一系列实验。他研究了紫外光对火花放电的影响,发现了光电效应,即在光的照射下物体会释放出电子的现象。这一发现,后来成了爱因斯坦建立光量子理论的基础。

1888年1月,赫兹将这些成果总结在《论动电效应的传播速度》一文中。赫兹实验公布后,轰动了全世界的科学界。由法拉第开创,麦克斯韦总结的电磁理论,至此才取得决定性的胜利。

1888年,成了近代科学史上的一座里程碑。赫兹的发现具有划时代的意义,它不仅证实了麦克斯韦发现的真理,更重要的是开创了无线电电子技术的新纪元。

赫兹对人类文明作出了很大贡献,正当人们对他寄以更大期望时,他却于1894年元旦因血中毒逝世,年仅36岁。为了纪念他的功绩,人们用他的名字来命名各种波动频率的单位,简称“赫”。

赫兹也是是国际单位制中频率的单位,它是每秒中的周期性变动重复次数的计量。赫兹的名字来自于德国物理学家海因里希·鲁道夫·赫兹。其符号是Hz。

1Hz = 1/s

SI 衍生单位
1 千赫 kHz 103 Hz 1 000 Hz
1 兆赫 MHz 106 Hz 1 000 000 Hz
1 吉赫 GHz 109 Hz 1 000 000 000 Hz
1 太赫 THz 1012 Hz 1 000 000 000 000 Hz
1 拍赫 PHz 1015 Hz 1 000 000 000 000 000 Hz
1 艾赫 EHz 1018 Hz 1 000 000 000 000 000 000 Hz
电(电压或电流),有直流和交流之分。在通信应用中,用作信号传输的一般郝是交流电。呈正弦变化的交流电信号,随着时间的变化,其幅度时正、时负,以一定的能量和速度向前传播(见图1)。
通常,我们把上述正弦波幅度在1秒钟内的重复变化次数称为信号的“频率”,用f表示;而把信号波形变化一次所需的时间称作“周期”,用T表示,以秒为单位。波行进一个周期所经过的距离称为“波长”,用λ表示,以米为单位。 f、T和λ存在如下关系:
f=1/T
v=λ.f
其中,v是电磁波的传播速度,等于3xlO8米/秒。
频率的单位是赫兹,简称赫,以符号Hz表示。赫兹(H•Hertz)是德国著名的物理学家,1887年,是他通过实验证实了电磁波的存在。后人为了纪念他,把“赫兹”定为频率的单位。
常用的频率单位还有千赫(KHz)、兆赫(MHz)、吉赫(GHz)等。
1KHZ=103HZ
1MHZ=106HZ
1GHz=109HZ
1THZ=1012HZ
1PHZ=10I5HZ
在载带信息的电信号中,有时会包含多种频率成分;将所有这些成分在频率轴上的位置标示出来,并表示出每种成分在功率或电压上的大小,这就是信号的“频谱”。它所占据的频率范围就叫做信号的频带范围。例如,在电话通信中,话音信号的频率范围是300~3400赫;在调频(FM)广播中,声音的频率范围是40赫~15千赫,电视广播信号的频率范围是0~4.2兆赫等.

2. 赫兹是什么东西

是人,也是频率的单位:

赫兹
赫兹 (1857-1894)

赫兹,德国物理学家,生于汉堡。早在少年时代就被光学和力学实验所吸引。十九岁入德累斯顿工学院学工程,由于对自然科学的爱好,次年转入柏林大学,在物理学教授亥姆霍兹指导下学习。1885年任卡尔鲁厄大学物理学教授。1889年,接替克劳修斯担任波恩大学物理学教授,直到逝世。

赫兹对人类最伟大的贡献是用实验证实了电磁波的存在。

赫兹在柏林大学随赫尔姆霍兹学物理时,受赫尔姆霍兹之鼓励研究麦克斯韦电磁理论,当时德国物理界深信韦伯的电力与磁力可瞬时传送的理论。因此赫兹就决定以实验来证实韦伯与麦克斯韦理论谁的正确。依照麦克斯韦理论,电扰动能辐射电磁波。赫兹根据电容器经由电火花隙会产生振荡原理,设计了一套电磁波发生器,赫兹将一感应线圈的两端接于产生器二铜棒上。当感应线圈的电流突然中断时,其感应高电压使电火花隙之间产生火花。瞬间后,电荷便经由电火花隙在锌板间振荡,频率高达数百万周。由麦克斯韦理论,此火花应产生电磁波,于是赫兹设计了一简单的检波器来探测此电磁波。他将一小段导线弯成圆形,线的两端点间留有小电火花隙。因电磁波应在此小线圈上产生感应电压,而使电火花隙产生火花。所以他坐在一暗室内,检波器距振荡器10米远,结果他发现检波器的电火花隙间确有小火花产生。赫兹在暗室远端的墙壁上覆有可反射电波的锌板,入射波与反射波重迭应产生驻波,他也以检波器在距振荡器不同距离处侦测加以证实。赫兹先求出振荡器的频率,又以检波器量得驻波的波长,二者乘积即电磁波的传播速度。正如麦克斯韦预测的一样。电磁波传播的速度等于光速。1888年,赫兹的实验成功了,而麦克斯韦理论也因此获得了无上的光彩。赫兹在实验时曾指出,电磁波可以被反射、折射和如同可见光、热波一样的被偏振。由他的振荡器所发出的电磁波是平面偏振波,其电场平行于振荡器的导线,而磁场垂直于电场,且两者均垂直传播方向。1889年在一次著名的演说中,赫兹明确的指出,光是一种电磁现象。第一次以电磁波传递讯息是1896年意大利的马可尼开始的。1901年,马可尼又成功的将讯号送到大西洋彼岸的美国。20世纪无线电通讯更有了异常惊人的发展。赫兹实验不仅证实麦克斯韦的电磁理论,更为无线电、电视和雷达的发展找到了途径。

1887年11月5日,赫兹在寄给亥姆霍兹一篇题为《论在绝缘体中电过程引起的感应现象》的论文中,总结了这个重要发现。接着,赫兹还通过实验确认了电磁波是横波,具有与光类似的特性,如反射、折射、衍射等,并且实验了两列电磁波的干涉,同时证实了在直线传播时,电磁波的传播速度与光速相同,从而全面验证了麦克斯韦的电磁理论的正确性。并且进一步完善了麦克斯韦方程组,使它更加优美、对称,得出了麦克斯韦方程组的现代形式。此外,赫兹又做了一系列实验。他研究了紫外光对火花放电的影响,发现了光电效应,即在光的照射下物体会释放出电子的现象。这一发现,后来成了爱因斯坦建立光量子理论的基础。

1888年1月,赫兹将这些成果总结在《论动电效应的传播速度》一文中。赫兹实验公布后,轰动了全世界的科学界。由法拉第开创,麦克斯韦总结的电磁理论,至此才取得决定性的胜利。

1888年,成了近代科学史上的一座里程碑。赫兹的发现具有划时代的意义,它不仅证实了麦克斯韦发现的真理,更重要的是开创了无线电电子技术的新纪元。

赫兹对人类文明作出了很大贡献,正当人们对他寄以更大期望时,他却于1894年元旦因血中毒逝世,年仅36岁。为了纪念他的功绩,人们用他的名字来命名各种波动频率的单位,简称“赫”。

3. 海因里希鲁道夫·赫兹有哪些著作

主要贡献:
1.赫兹实验
赫兹对人类文明作出了很大贡献,正当人们对他寄以更大期望时,他却于1894年元旦因血中毒逝世,年仅36岁。为了纪念他的功绩,人们用他的名字来命名各种波动频率的单位,简称“赫”。赫兹也是是国际单位制中频率的单位,它是每秒中的周期性变动重复次数的计量。赫兹的名字来自于德国物理学家海因里希·鲁道夫·赫兹。其符号是Hz。电(电压或电流),有直流和交流之分。在通信应用中,用作信号传输的一般都是交流电。呈正弦变化的交流电信号,随着时间的变化,其幅度时正、时负,以一定的能量和速度向前传播。通常,我们把上述正弦波幅度在1秒钟内的重复变化次数称为信号的“频率”,用f表示;而把信号波形变化一次所需的时间称作“周期”,用T表示,以秒为单位。波行进一个周期所经过的距离称为“波长”,用λ表示,以米为单位。f、T和λ存在如下关系: f=1/T ,v=λ.f ,其中,v是电磁波的传播速度,等于3x10^8米/秒。频率的单位是赫兹,简称赫,以符号Hz表示。
赫兹(H·Hertz)是德国著名的物理学家,1887年,是他通过实验证实了电磁波的存在。后人为了纪念他,把“赫兹”定为频率的单位。常用的频率单位还有千赫(KHz)、兆赫(MHz)、吉赫(GHz)等。在载带信息的电信号中,有时会包含多种频率成分;将所有这些成分在频率轴上的位置标示出来,并表示出每种成分在功率或电压上的大小,这就是信号的“频谱”。它所占据的频率范围就叫做信号的频带范围。例如,在电话通信中,话音信号的频率范围是300~3400赫;在调频(FM)广播中,声音的频率范围是40赫~15千赫,电视广播信号的频率范围是0~4.2兆赫等。
2.波动方程
海因里希·鲁道夫·赫兹(Heinrich Rudolf Hertz)在1886年至1888年间首先通过试验验证了麦克斯韦尔的理论。他证明了无线电辐射具有波的所有特性,并发现电磁场方程可以用偏微分方程表达,通常称为波动方程。1887年11月5日,赫兹在寄给亥姆霍兹一篇题为《论在绝缘体中电过程引起的感应现象》的论文中,总结了这个重要发现。接着,赫兹还通过实验确认了电磁波是横波,具有与光类似的特性,如反射、折射、衍射等,并且实验了两列电磁波的干涉,同时证实了在直线传播时,电磁波的传播速度与光速相同,从而全面验证了麦克斯韦的电磁理论的正确性。并且进一步完善了麦克斯韦方程组,使它更加优美、对称,得出了麦克斯韦方程组的现代形式。此外,赫兹又做了一系列实验。
赫兹
他研究了紫外光对火花放电的影响,发现了光电效应,即在光的照射下物体会释放出电子的现象。这一发现,后来成了爱因斯坦建立光量子理论的基础。1888年1月,赫兹将这些成果总结在《论动电效应的传播速度》一文中。赫兹实验公布后,轰动了全世界的科学界。由法拉第开创,麦克斯韦总结的电磁理论,至此才取得决定性的胜利。1888年,成了近代科学史上的一座里程碑。赫兹的发现具有划时代的意义,它不仅证实了麦克斯韦发现的真理,更重要的是开创了无线电电子技术的新纪元。随着迈克尔逊在1881年进行的实验和1887年的迈克尔逊-莫雷实验推翻了光以太的存在,赫兹改写了麦克斯韦方程组,将新的发现纳入其中。通过实验,他证明电信号象詹姆士·麦克斯韦和迈克尔·法拉第预言的那样可以穿越空气,这一理论是发明无线电的基础。他注意到带电物体当被紫外光照射时会很快失去它的电荷,发现了光电效应,后来由阿尔伯特·爱因斯坦给予解释。
3.光电效应
出了麦克斯韦方程组的现代形式。此外,赫兹又做了一系列实验。
赫兹
他研究了紫外光对火花放电的影响,发现了光电效应,即在光的照射下物体会释放出电子的现象。这一发现,后来成了爱因斯坦建立光量子理论的基础。1888年1月,赫兹将这些成果总结在《论动电效应的传播速度》一文中。赫兹实验公布后,轰动了全世界的科学界。由法拉第开创,麦克斯韦总结的电磁理论,至此才取得决定性的胜利。1888年,成了近代科学史上的一座里程碑。赫兹的发现具有划时代的意义,它不仅证实了麦克斯韦发现的真理,更重要的是开创了无线电电子技术的新纪元。随着迈克尔逊在1881年进行的实验和1887年的迈克尔逊-莫雷实验推翻了光以太的存在,赫兹改写了麦克斯韦方程组,将新的发现纳入其中。通过实验,他证明电信号象詹姆士·麦克斯韦和迈克尔·法拉第预言的那样可以穿越空气,这一理论是发明无线电的基础。他注意到带电物体当被紫外光照射时会很快失去它的电荷,发现了光电效应,后来由阿尔伯特·爱因斯坦给予解释。
光电效应
出了麦克斯韦方程组的现代形式。此外,赫兹又做了一系列实验。
赫兹
他研究了紫外光对火花放电的影响,发现了光电效应,即在光的照射下物体会释放出电子的现象。这一发现,后来成了爱因斯坦建立光量子理论的基础。1888年1月,赫兹将这些成果总结在《论动电效应的传播速度》一文中。赫兹实验公布后,轰动了全世界的科学界。由法拉第开创,麦克斯韦总结的电磁理论,至此才取得决定性的胜利。1888年,成了近代科学史上的一座里程碑。赫兹的发现具有划时代的意义,它不仅证实了麦克斯韦发现的真理,更重要的是开创了无线电电子技术的新纪元。随着迈克尔逊在1881年进行的实验和1887年的迈克尔逊-莫雷实验推翻了光以太的存在,赫兹改写了麦克斯韦方程组,将新的发现纳入其中。通过实验,他证明电信号象詹姆士·麦克斯韦和迈克尔·法拉第预言的那样可以穿越空气,这一理论是发明无线电的基础。他注意到带电物体当被紫外光照射时会很快失去它的电荷,发现了光电效应,后来由阿尔伯特·爱因斯坦给予解释。
3.光电效应
光照射到某些物质上,引起物质的电性质发生变化。这类光致电变的现象被人们统称为光电效应。金属表面在光辐照作用下发射电子的效应,发射出来的电子叫做光电子。光波长小于某一临界值时方能发射电子,即极限波长,对应的光的频率叫做极限频率。临界值取决于金属材料,而发射电子的能量取决于光的波长而与光强度无关,这一点无法用光的波动性解释。还有一点与光的波动性相矛盾,即光电效应的瞬时性,按波动性理论,如果入射光较弱,照射的时间要长一些,金属中的电子才能积累住足够的能量,飞出金属表面。可事实是,只要光的频率高于金属的极限频率,光的亮度无论强弱,光子的产生都几乎是瞬时的,不超过十的负九次方秒。正确的解释是光必定是由与波长有关的严格规定的能量单位(即光子或光量子)所组成。这种解释为爱因斯坦所提出。光电效应由德国物理学家赫兹于1887年发现,对发展量子理论起了根本性作用,在光的照射下,使物体中的电子脱出的现象叫做光电效应(Photoelectric effect)。光电效应分为光电子发射、光电导效应和光生伏打效应。前一种现象发生在物体表面,又称外光电效应。后两种现象发生在物体内部,称为内光电效应。光电效应里,电子的射出方向不是完全定向的,只是大部分都垂直于金属表面射出,与光照方向无关,光是电磁波,但是光是高频震荡的正交电磁场,振幅很小,不会对电子射出方向产生影响。hυ=(1/2)mv^2+I+W 式中(1/2)mv^2是脱出物体的光电子的初动能。金属内部有大量的自由电子,这是金属的特征,因而对于金属来说,I项可以略去,爱因斯坦方程成为 hυ=(1/2)mv^2+W 假如hυ<W,电子就不能脱出金属的表面。对于一定的金属,产生光电效 应的最小光频率(极限频率) υ0。由 hυ0=W确定。相应的极限波长为 λ0=C/υ0=hc/W。发光强度增加使照射到物体上的光子的数量增加,因而发射的光电子数和照射光的强度成正比。③利用光电效应可制造光电倍增管。光电倍增管能将一次次闪光转换成一个个放大了的电脉冲,然后送到电子线路去,记录下来。算式在以爱因斯坦方式量化分析光电效应时使用以下算式:光子能量= 移出一个电子所需的能量 + 被发射的电子的动能 代数形式:hf=φ+Em φ=hf0 Em=(1/2)mv^2 其中 h是普朗克常数,h = 6.63 ×10^-34 J·s,f是入射光子的频率,φ是功函数,从原子键结中移出一个电子所需的最小能量,f0是光电效应发生的阀值频率,Em是被射出的电子的最大动能,m是被发射电子的静止质量,v是被发射电子的速度,如果光子的能量(hf)不大于功函数(φ),就不会有电子射出。功函数有时又以W标记。这个算式与观察不符时(即没有射出电子或电子动能小于预期),可能是因为系统没有完全的效率,某些能量变成热能或辐射而失去了。爱因斯坦因成功解释了光电效应而获得1921年诺贝尔物理学奖。
4.接触力学
接触力学是研究相互接触的物体之间如何变形的一门学科。赫兹1882年发表了关于接触力学的著名文章“关于弹性固体的接触(On the contact of elastic solids)”,赫兹进行这方面研究的初衷是为了理解外力如何导致材料光学性质的改变。为了发展他的理论,赫兹用一个玻璃球放置在一个棱镜上,他首先观察到这个系统形成了椭圆形的牛顿环,以此实验观察,赫兹假设玻璃球对棱镜施加的压力也为椭圆分布。随后他根据压力分布计算了玻璃球导致的棱镜的位移并反算出牛顿环,以此再和实验观察对比以检验理论的正确性。最后赫兹的到了接触应力和法向加载力,接触体的曲率半径,以及弹性模量之间的关系。赫兹的方程是研究疲劳,摩擦以及任何有接触体之间相互作用的基本方程。
赫兹接触理论的主要缺点是没有考虑两个接触体之间的结合力。这一问题在1971年 K. L. Johnson K. Kendall 和 A. D. Roberts解决,他们提出了最后以三人名字命名的JKR接触理论。JKR理论中他们考虑了材料的表面能效应,由于表面能的存在,相互接触的固体之间将引进一个结合力,最后根据能量平衡的原理,他们得到一个方程描述接触应力分布,接触体曲率半径,弹性模量以及材料表面能之间的关系。在JKR模型中,当表面能为零时,方程自然过渡到赫兹方程。推导JKR模型的前提之一是,认为两个接触体的所有相互作用均发生在接触半径之内,后来证明如果采用不同的假设会得到不同的结论。1975年,B.V.Derjaguin, V. M. Muller and Y. P. Toporov等人假设接触体之间相互作用可以发生在接触半径之外,据此假设提出了所谓的DMT模型试图考虑结合力的影响。根据JKR和DMT模型,会的到不同的(pull-off)分离力(分开两个接触体所需要的最大作用力),这一不同的结果曾引起很多争论,最后Muller等人指出JKR和DMT模型各有各的应用范围:JKR模型对大颗粒,高表面能,低弹性模量的材料描述较好。而DMT模型则相反。
而赫兹的主要贡献是用实验证明了电磁波的存在,并测出电磁波传播的速度跟光速相同,还进一步观察到电磁波具有聚焦、直进性、反射、折射和偏振等性质。为物理的发展作出了重要贡献。

4. HZ是一个物理单位,它代表什么

赫兹是一个短命的物理学家。他于年逝世时,年仅37岁,这无疑
是物理学界的巨大损失。他从21岁考人柏林大学直到不幸去世,进行科学
研究不足15年,然而却建立了永垂青史的功绩。
赫兹以前,由法拉第发现、麦克斯韦完成的电磁理论,因为未经一系
列的科学实验证明,始终处于“预想”阶段。把天才的预想变成世人公认
的真理,是赫兹的功劳。赫兹在人类历史上首先捕捉到电磁波,使假说变
成现实。
要获得电磁波,就必须建立一个辐射电磁波源,这个电磁波辐射源还
应当有足够的功率。名师出高徒,赫兹的恩师赫尔姆霍茨是一位理论和实
验俱佳的卓越物理学家。在他的指导和帮助下,赫兹很快制成了电磁波辐
射源,当时它被称作赫兹振荡器。
当实验设备基本备齐以后,赫兹投入了实验过程。这时,他作为卡尔
斯鲁厄大学的年轻教授,每周需承担20几节课的教学任务,这使他只能从
课余挤时间进行实验。
这一天,赫兹正在上课。
“今天的课就讲到这里,再见,先生们!”赫兹教授说完,急忙将几
页记得密密麻麻的记录纸准备好,焦急地等待最后一个学生离开教室。到
下一节课还有三个小时,这段时间应该好好的利用,再作一次实验。
“卡尔,我们开始吧!”他呼唤一直等候他的技师。二人很快把教室
讲台当成实验台。这里是赫兹作试验的唯一场所,因为卡尔斯鲁厄大学给
他的地方太小了。
赫兹习惯性地首先检查谐振器,将谐振器放到高振荡器有一。定距离
的地方,使谐振器的平面与振荡器上放电器的轴相吻合。实验开始,赫兹
和技师卡尔立刻忙碌起来,过了一个多小时,火花还是没有迸发出来。当
把各种可能发生的情况,都进行检查后仍然毫无结果,他们疲惫不堪地坐
在桌旁。
赫兹已经记不得这是第几次失败了。从一开始实验,他就像与成功无
缘似的,麦克斯韦预言过,电磁振荡波一样可以折射、反射,具有波的一
切属性。
在这个房间,他借助振荡器和谐振器已经证实了从电磁辐射源发出的
电磁场,就是电磁波。可是,现在他想证明电磁波具有像光一样的反射性
能,他打算把 反射的电磁波记录下来,然而却一直没有成功。
冥思苦想,新的思路终于诞生了。经过调谐电磁辐射源的内部要素,
加大每秒钟振荡的次数,赫兹终于证明了电磁波具有光一样的反射性能。
在以后的工作中,赫兹悉心研究了电磁波的折射、干涉、偏振和衍射等现
象,并且证明了它们的传播速度等于光速,这样,赫兹第一个证实了光从
其本质上说也是一种电磁波的问题。
1898年,赫兹在应邀担任波恩大学物理学教授的赴任途中,欣闻自己
的著作《论电力射线》已经出版,感到无限欣慰。
发现电磁波产生的巨大影响,连赫兹本人也没料到。在他发现电磁波
的第二年,有人问他,电磁波是否可以用作无线电通讯,赫兹不敢肯定。
赫兹研究电磁波无意中丢下的种子,却很快在异地开花结果了。
在发现电磁波不到 6年,意大利的马可尼、俄国的波波夫分别实现厂
无线电传播,并很快投人实际使用。其他利用电磁波的技术,也像雨后春
笋般相继问世。无线电报(1894年)、 无线电广播(1906年)、无线电
导航(1911年)、无线电话(1916年)、短波通讯(1921年)、无线电
传真(1923年)、电视(1929年)、微波通讯(1933年)、雷达(1935
年),以及遥控、遥感、卫星通讯、射电天文学 ……它们使整个世界面
貌发生了深刻的变化。
赫兹关于电磁波的实验,为无线电技术的发展开拓了新的道路,构成
了现代文明的骨架,后人为了纪念他,把频率的单位定为赫兹。
选自内蒙古少年儿童出版社《科学上下五千年》

5. 比特和赫兹的区别,如何进行换算

比特(bit)

计算机专业术语,是信息量单位,是由英文BIT音译而来。二进制数的一位所包含的信息就是一比特.如二进制数0101就是4比特.

二进制数字中的位,信息量的度量单位,为信息量的最小单位。数字化音响中用电脉冲表达音频信号,“1”代表有脉冲,“0”代表脉冲间隔。如果波形上每个点的信息用四位一组的代码表示,则称4比特,比特数越高,表达模拟信号就越精确,对音频信号信号还原能力越强。

名字 缩写 次方 名字 缩写 次方
kilobit kbit 10^3 kibibit Kibit 2^10
megabit Mbit 10^6 mebibit Mibit 2^20
gigabit Gbit 10^9 gibibit Gibit 2^30
terabit Tbit 10^12 tebibit Tibit 2^40
petabit Pbit 10^15 pebibit Pibit 2^50
exabit Ebit 10^18 exbibit Eibit 2^60
zettabit Zbit 10^21 zebibit Zibit 2^70
yottabit Ybit 10^24 yobibit Yibit 2^80

比特(Bit),亦称二进制位。新港台:位元

比特指二进制中的一位,是二进制最小信息单位。Bit,乃BInary digiT(二进制数位)的缩写,是数学家John Wilder Tukey提议的术语(可能是1946年提出,但有资料称1943年就提出了)。这个术语第一次被正式使用,是在香农著名的论文《通信的数学理论》(A Mathematical Theory of Communication)之第1页中。

假设一事件以A或B的方式发生,且A、B发生的概率相等,都为0.5,则一个二进位可用来代表A或B之一。 例如:

二进位可以用来表示一个简单的正/负的判断,
有两种状态的开关(如电灯开关) ,
晶体管的通断,
某根导线上电压的有无,或者
一个抽像的逻辑上的然/否,等等。
由于转换成二进制后长度会发生变化,不同数制下一位的信息量并不总是一个二进位,其对应关系为对数关系,例如八进制的一位数字,八进位,相当于3个二进位。除二进位外,在电脑上常用的还有八进制,十进制,和十六进制等的八进位,十进位,和十六进位等。

现代信息技术计量信息量时可达若干亿比特。类似的单位还
赫兹,德国物理学家,生于汉堡。早在少年时代就被光学和力学实验所吸引。十九岁入德累斯顿工学院学工程,由于对自然科学的爱好,次年转入柏林大学,在物理学教授亥姆霍兹指导下学习。1885年任卡尔鲁厄大学物理学教授。1889年,接替克劳修斯担任波恩大学物理学教授,直到逝世。

赫兹对人类最伟大的贡献是用实验证实了电磁波的存在。

赫兹在柏林大学随赫尔姆霍兹学物理时,受赫尔姆霍兹之鼓励研究麦克斯韦电磁理论,当时德国物理界深信韦伯的电力与磁力可瞬时传送的理论。因此赫兹就决定以实验来证实韦伯与麦克斯韦理论谁的正确。依照麦克斯韦理论,电扰动能辐射电磁波。赫兹根据电容器经由电火花隙会产生振荡原理,设计了一套电磁波发生器,赫兹将一感应线圈的两端接于产生器二铜棒上。当感应线圈的电流突然中断时,其感应高电压使电火花隙之间产生火花。瞬间后,电荷便经由电火花隙在锌板间振荡,频率高达数百万周。由麦克斯韦理论,此火花应产生电磁波,于是赫兹设计了一简单的检波器来探测此电磁波。他将一小段导线弯成圆形,线的两端点间留有小电火花隙。因电磁波应在此小线圈上产生感应电压,而使电火花隙产生火花。所以他坐在一暗室内,检波器距振荡器10米远,结果他发现检波器的电火花隙间确有小火花产生。赫兹在暗室远端的墙壁上覆有可反射电波的锌板,入射波与反射波重叠应产生驻波,他也以检波器在距振荡器不同距离处侦测加以证实。赫兹先求出振荡器的频率,又以检波器量得驻波的波长,二者乘积即电磁波的传播速度。正如麦克斯韦预测的一样。电磁波传播的速度等于光速。1888年,赫兹的实验成功了,而麦克斯韦理论也因此获得了无上的光彩。赫兹在实验时曾指出,电磁波可以被反射、折射和如同可见光、热波一样的被偏振。由他的振荡器所发出的电磁波是平面偏振波,其电场平行于振荡器的导线,而磁场垂直于电场,且两者均垂直传播方向。1889年在一次著名的演说中,赫兹明确的指出,光是一种电磁现象。第一次以电磁波传递讯息是1896年意大利的马可尼开始的。1901年,马可尼又成功的将讯号送到大西洋彼岸的美国。20世纪无线电通讯更有了异常惊人的发展。赫兹实验不仅证实麦克斯韦的电磁理论,更为无线电、电视和雷达的发展找到了途径。

1887年11月5日,赫兹在寄给亥姆霍兹一篇题为《论在绝缘体中电过程引起的感应现象》的论文中,总结了这个重要发现。接着,赫兹还通过实验确认了电磁波是横波,具有与光类似的特性,如反射、折射、衍射等,并且实验了两列电磁波的干涉,同时证实了在直线传播时,电磁波的传播速度与光速相同,从而全面验证了麦克斯韦的电磁理论的正确性。并且进一步完善了麦克斯韦方程组,使它更加优美、对称,得出了麦克斯韦方程组的现代形式。此外,赫兹又做了一系列实验。他研究了紫外光对火花放电的影响,发现了光电效应,即在光的照射下物体会释放出电子的现象。这一发现,后来成了爱因斯坦建立光量子理论的基础。

1888年1月,赫兹将这些成果总结在《论动电效应的传播速度》一文中。赫兹实验公布后,轰动了全世界的科学界。由法拉第开创,麦克斯韦总结的电磁理论,至此才取得决定性的胜利。

1888年,成了近代科学史上的一座里程碑。赫兹的发现具有划时代的意义,它不仅证实了麦克斯韦发现的真理,更重要的是开创了无线电电子技术的新纪元。

赫兹对人类文明作出了很大贡献,正当人们对他寄以更大期望时,他却于1894年元旦因血中毒逝世,年仅36岁。为了纪念他的功绩,人们用他的名字来命名各种波动频率的单位,简称“赫”。

赫兹也是是国际单位制中频率的单位,它是每秒中的周期性变动重复次数的计量。赫兹的名字来自于德国物理学家海因里希·鲁道夫·赫兹。其符号是Hz。

1Hz = 1/s

SI 衍生单位
1 千赫 kHz 103 Hz 1 000 Hz
1 兆赫 MHz 106 Hz 1 000 000 Hz
1 吉赫 GHz 109 Hz 1 000 000 000 Hz
1 太赫 THz 1012 Hz 1 000 000 000 000 Hz
1 拍赫 PHz 1015 Hz 1 000 000 000 000 000 Hz
1 艾赫 EHz 1018 Hz 1 000 000 000 000 000 000 Hz
电(电压或电流),有直流和交流之分。在通信应用中,用作信号传输的一般郝是交流电。呈正弦变化的交流电信号,随着时间的变化,其幅度时正、时负,以一定的能量和速度向前传播(见图1)。
通常,我们把上述正弦波幅度在1秒钟内的重复变化次数称为信号的“频率”,用f表示;而把信号波形变化一次所需的时间称作“周期”,用T表示,以秒为单位。波行进一个周期所经过的距离称为“波长”,用λ表示,以米为单位。 f、T和λ存在如下关系:
f=1/T
v=λ.f
其中,v是电磁波的传播速度,等于3xlO8米/秒。
频率的单位是赫兹,简称赫,以符号Hz表示。赫兹(H•Hertz)是德国著名的物理学家,1887年,是他通过实验证实了电磁波的存在。后人为了纪念他,把“赫兹”定为频率的单位。
常用的频率单位还有千赫(KHz)、兆赫(MHz)、吉赫(GHz)等。
1KHZ=103HZ
1MHZ=106HZ
1GHz=109HZ
1THZ=1012HZ
1PHZ=10I5HZ
在载带信息的电信号中,有时会包含多种频率成分;将所有这些成分在频率轴上的位置标示出来,并表示出每种成分在功率或电压上的大小,这就是信号的“频谱”。它所占据的频率范围就叫做信号的频带范围。例如,在电话通信中,话音信号的频率范围是300~3400赫;在调频(FM)广播中,声音的频率范围是40赫~15千赫,电视广播信号的频率范围是0~4.2兆赫等.
有字节。

6. 别慌,破产其实是赫兹的一条出路

文 |?Karakush
疫情对巨头下手了。

上周五,美国百年租车行赫兹租车(实体为Hertz Global Holdings, Inc.)申请了破产保护。这是美国规模最大、资格最老的租车行之一,去彼岸转悠过的朋友一定都在机场见过它的Logo。

而眼下,其巨头之巨更体现在所面临的困境上,负债近190亿美元(约合人民币1355亿元),闲置超过70万辆汽车。原因特别粗暴,主营的租车业务直接被疫情给锤爆了。
这里要先科普一个概念:“破产保护”不同于“破产”。
赫兹进入的是美国《破产法》第11章破产保护程序,其实是“重组”业务,争取一个再度盈利、重新富贵的机会;和第7章直接进行破产清算,是不一样的。按照章程,赫兹仍然可以照常运营,管理层继续负责日常业务,只是公司所有的重大经营决策必须得到破产法庭的批准。

以往不少公司经过重组,还是能够爬起来再浪五百年的,比如2009年通用汽车,也是申请了破产保护,后来成功回魂;当然不排除另一些公司,最后还是只能清算退场。

国内一些报道比较浮夸,采用了诸如“轰然倒下”之类特别富有戏剧张力的说法。其实人家现在的状态更接近于,扶我起来,我还能再走两步。
事实上,破产重组或许是赫兹的一条出路。绝大多数行业观察者都认为,远在疫情之前,赫兹已经是四面楚歌,甚至有些积重难返的意思。过去四年,赫兹财务业绩净亏四连,去年净亏损约5800万美元(约合人民币4.14亿元)。

我们不能把原因简单地归咎于恶劣的生存环境。毕竟当你望向深渊时,深渊也在望着你,以及你的竞品。在疫情的无差别攻击之下,包括租车行业在内的空/陆交通都受到了严重打击。然而你被望垮了,对家还挺着,就说明确实存在生存能力上的水平差异。

赫兹在美国租车圈的主流对家,有Enterprise Holdings, Inc.和Avis Budget Group, Inc.两家。
以Avis为例,一季度净亏损1.58亿美元(约合人民币11.27亿元)。他们预计,营收在4月、5月会进一步下降,但从6月起可能开始逐渐复苏,这样下来整个二季度预计将消耗约8亿美元(约合人民币57亿元)的现金,但他们表示有足够的资金流动性来覆盖支出,并且应该有能力可以维持到年底。

实际上,应对这波突发而持久的风险,最关键的就是企业的现金流能力,一面尽可能保留现金储备,一面加深债务来支撑流动性。我们之前总觉得疫情是中小企业屠夫,其实屠的不是规模,而是在业务停摆之后的现金流。

大企业相对来说总有腾挪倒手的余地。但其前提是,企业的财务状况本身比较稳定,也就是说,拼的是过去企业运营的累积。而赫兹以往的一系列骚操作,使得它本身比起对家要脆弱得多,风险一劈头一盖脸,总要有报应的。

长期关注赫兹超过20年的研究机构CreditSights总结道,那些花在高价并购上的钱,以及可疑的车队管理,现在都追上来了。
一个体现在于几年前,赫兹要更新车队,手头不大宽裕,于是就短视地采购了便宜又容易的轿车,而不是用户实际更想要的SUV。拥车数量是翻了一倍,但是跟不上市场需求,用实力脱节到让用户叛变的地步。

前CEO约翰·塔格(John Tague)解释,“我们是在解决公司最大的问题,但并没有解决所有问题。”他在2014年末接手赫兹的时候,已经积弊一堆,除了车型严重老化,还因为搬迁总部失去了约3/4的员工。

这个轿车决策是一系列战略失误的缩影。
那些年,赫兹尽干想不开的事,最想不开的是贸然决定扩张,进军休闲旅行者租车市场。赫兹原本祖传深耕的是商务旅行者租车市场,为此硬是和休闲旅行者市场的王者玩家Avis较劲两年,竞购Dollar Thrifty Automotive Group(狗头翻译:省刀汽车集团)。

得手是得手了,成交价超过20亿美元,属于绝对被敲竹杠的高价。而为了付款,赫兹在债券市场大量举债,将公司债务增加约50%至60亿美元。后续整合也是各种坑,不仅没能兑现省钱的承诺,还一直投入浪费钱。

人穷起来,最可怕的就是形成一个穷人思维,把自己越套越穷。为了省钱,赫兹又决定把手上所持的租赁车辆捂得再久一点,延长车辆服役的生命周期,把老车旧车组织成了一支打折车队。从概念来说酷炫得不得了,梯次利用,降低折旧负担,并且也着实在短期内提振了业绩。

然而最终是适得其反的。用户抱怨车况太差体验不行,纷纷叛逃去了Avis。
有意思的是,不少作事都是在马克·弗里索拉(Mark Frissora)担任企业CEO期间干的。赫兹非常埋怨这位前任高管,而弗里索拉也是矢口否认自己做了错误的决策,坚持自己主持了运营方面的改进,并认为他卸任之后赫兹业绩下滑,都是高管流失造成的锅。

一位CEO能在多大程度上影响企业的命运与前途,不大好说,要能折腾倒也肯定不只是个人能力造作,而是企业本身管理存在体系性问题。可以确定的是,赫兹并不那么信任CEO,在十年不到的时间换过四个。现任是在这个月才新上任的。

无论领导风格如何,连贯的特征是,依靠车辆资产在证券市场大举举债。从2015年开始,他们发行了风险更高的债券,以筹集更多的资金。这也为眼下的崩盘埋下伏笔。对金融工程的过度依赖,使得赫兹在4月需要向债券持有人支付约5亿美元(约合人民币35.7亿元),随着二手车价值下降,这一数字迅速膨胀,而它的账面上大约仅有10亿美元(约合人民币71亿元)的现金。
与此同时,资本更强的Avis和Enterprise,则是迅速采取了与时俱进的花样措施,开始升级技术、更新车队、导入更多的SUV。近些年,租车行业不止面临着业内竞争,还有来自Uber和Lyft等其他出行模式的挤压。投资生产资料进化,是非常值得的手笔。

综上种种吧,《华尔街日报》有句评论总结得特别好:今天那些麻烦巨多的公司,大都从昨天开始就麻烦巨多了。
值得注意的是,此次调整只是在美国和加拿大,国际分公司暂不受影响。这其中也包括中国业务。

你可能没在中国听过赫兹,因为实际运营的是神州租车赫兹业务部。2013年,赫兹战投神州租车,获得后者近20%的股权及一名董事会席位,而神州租车则收购并整合了赫兹在中国的所有租车业务。到2017年,神州租车还借赫兹之力,正式开通了国际租车业务。

所以,我们上面说的可能都是屁话。还是瑞幸这碗刷锅水有毒吧。
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

7. 10u/s 等于多少赫兹如题 谢谢了

赫兹的单位是秒的负一次方,不知道你写u/s是什么意思?如果u是常数,那应该就是10u HZ了